
CBCS SCHEME

Fifth Semester B.E. Degree Examination, July/August 2021 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Define the following terms with examples alphabet, powers of an alphabet string, string concatenation and languages.

 (10 Marks)
 - b. Define DFSM. Design a DFSM to accept each of the following languages:
 - i) $L = \{W \in \{0.1\}^* : W \text{ is ending with } 011\}$
 - ii) $L = \{W \in \{0.1\}^* : W \text{ has odd numbers of a's and even numbers of b's} \}$ (10 Marks)
- 2 a. Convert the following NDFSM to DFSM:

δ	3	a	b	С
$\rightarrow p$	φ<	{p}	{q}	{r}
q	{p}	{q}	{r}	ф
*r	{q}	{r}	φ	{p}

(10 Marks)

b. Define distinguishable and Indistinguishable states. Minimize the following DFSM.

δ	a	b
\rightarrow A	В	F
В	G	C
*C	A	С
D	С	G
E	Н	F
F	С	G
G	G	E
Н	G	C

(10 Marks)

- 3 a. Define Regular expression. Write the regular expression for the following languages:
 - i) To accept strings of a's and b's such that third symbol from the right is 'a' and fourth symbol from the right is 'b'.
 - ii) $L = \{a^n b^m; n \ge 4, m \le 3\}$

(10 Marks)

b. Build a regular expression from the following FSM (Finite State Machine).

(06 Marks)

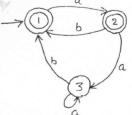


Fig.Q.3(b)

c. Write an equivalent NDFSM for the following regular expression $a(a^* + b^*)^*b$. (04 Marks)

- 4 a. Show that regular languages are closed under complement and intersection. (10 Marks)
 - b. State and prove pumping lemma theorem for regular languages. And show that the language $L = \{WW^R : W \in \{0, 1\}^* \text{ is not regular}\}.$ (10 Marks)
- 5 a. Define CFG (Context Free Grammar). Design CFG for the languages.
 - i) $L = \{O^{2n}1^m | n >= 0, m >= 0\}$
 - ii) $L = \left\{ O^{i} 1^{j} 2^{k} \middle| i = j \text{ or } j = k \right\}$ (10 Marks)
 - b. Define Ambiguity. Is the following grammar ambiguous? Give reason.
 S → iCts|iCtSeS|a

 $C \rightarrow b$ (10 Marks)

- 6 a. Define CNF (Chomsky Normal Form). Convert the following CFG to CNF. $S \to aACa, \ A \to B|a \ , \ B \to C|c \ , \ C \to cC|\epsilon \eqno(10 \text{ Marks})$
 - b. Define PDA (Push Down Automata). Design a PDA to accept the following language, $L = \{a^nb^n : n \ge 0\}$. Draw the transition diagram for the constructed PDA. Show the ID's for the string aaabbb. (10 Marks)
- 7 a. Define a Turing Machine. Explain the working of a Turing Machine. (08 Marks)
 - b. Design a Turing Machine to accept $L = \{0^n 1^n 2^n | n \ge 0\}$. Draw the transition diagram. Show the moves made for string 001122. (12 Marks)
- 8 a. Design a TM for addition of 2 numbers (2+3) with transition diagram and ID for the same.
 - b. Define and differentiate DTM and NDTM. (14 Marks)
 (06 Marks)
- 9 a. Explain post correspondence problem. (08 Marks)
 - b. Explain Halting problem in Turing Machine. (08 Marks)
 - c. Write a note on Church Turing Hypothesis. (04 Marks)
- 10 a. Explain three variants of Turing Machine. (12 Marks)
 - b. Write a note on Quantum Computation. (08 Marks)

* * * * *